Introduction to
Software Testing

CS480 Software Engineering
Yu Sun, Ph.D. I(r;
http://yusun.io

yusun@cpp.edu CAL POLY POMONA

Test in Agile Development

Program Testing

Can reveal the presence of errors NOT their absence

¢ Only exhaustive testing can show a program is free from
defects

¢ Exhaustive testing for anything but trivial programs is
impossible

Testing shows the presence, not the absence of
bugs

(Edsger Dijkstra)

izquotes.com

Program Testing

Can reveal the presence of errors NOT their absence

¢ Only exhaustive testing can show a program is free from
defects

¢ Exhaustive testing for anything but trivial programs is
impossible

A successful test discovers one or more errors

Specified, Programmed, and Tested Behaviors

S = Specified behaviors
P = Programmed behaviors
T = Tested behavior

U = All possible behaviors

We want to make region 1
as large as possible

The V-model of Testing

Requirements

Acceptance
Test

Architectural

System Test

4 Design
ey
R Detailed Integration
o | ke —————
' Design Test
Module .
“ S s Unit Test
Implementation

Testing Stages

Unit testing
+ Testing of individual components
Integration testing

¢ Testing to expose problems arising from the combination
of components

System testing
+ Testing the complete system prior to delivery
Acceptance testing

¢ Testing by users to check that the system satisfies
requirements

Testing Stages

+ Alpha testing

¢ When a product is used by many users, an alpha test is
conducted in a controlled environment at the development
site with end-user participation

+ Beta testing

+ An extension to alpha testing where the users test the
software in a "live" environment; developers are typically
not present

fac;“ook GM Al

by Google BETA

Distinction Between Debugging and Testing

Defect testing and debugging are distinct processes

Defect testing is concerned with confirming the presence
of errors

Debugging is concerned with locating and repairing these
errors

Debugging involves formulating a hypothesis about
program behavior then exploring these hypotheses to
find the system error

Historical Views: Thinking About Testing

¢ Phase 0
¢ Testing = Debugging
¢+ Phase |

¢ Testing is an act whose purpose is to show that the
software works

¢ Phase 2

¢ Testing is an act whose purpose is to show that the
software does not work

Historical Views: Thinking About Testing

¢ Phase 3

¢ Testing is an act whose purpose is not to prove anything,
but to reduce the perceived risk of failure to an acceptable
level

1123 (4[5 |(6[7(8|9 |10
11112113 |14 (15|16 |17 (18|19 | 20 Availability ~ Downtime Per Year (24X7X365)
21(22123|24(25)|26|27 (28|29 | 30 99.000% 3Days 15Hours 36 Minutes
311323334 35|36 3738|3940 99.500% 1Day 8 Hours 48 Minutes

41(42(43]44 [45(46(47[48[49 |50 | g9900% 8 Hours 46 Minutes
51(52(53 (54 5556575859 60| g9.950% AHours 3 Minutes
6162|6364 [65(66(67[68]69 [70| g9.9905% 53 Minutes
71(72|73[74[75(76]77[78[79[80 | g9 g0y, 5 Minutes

81/82|83(84|85|86|87|88|89 | 90
9192|9394 95|96 (97|98 |99 |100

All Prime Numbers (1-100)

99.9999% 30 Seconds

Service Level Agreement (SLA)

Historical Views: Thinking About Testing
Phase 3

+ Testing is an act whose purpose is not to prove anything,
but to reduce the perceived risk of failure to an acceptable
level

Phase 4

+ Testing is not an act; rather, it is a mindset that involves
development and coding practices along with a systematic
approach to exercising the software

Red SN

. A
Write a Make
Failing the Test
T D D Test Pass
h

KN Y 4
Refactor A N . é/ér

¥ Refactor

Testing Methods

Functional (Black Box) Testing

+ Knowing the specified functions
that a product has been
designed to perform, tests can
be conducted to demonstrate
that each function is fully
operational

7 Input
.

¢ Test cases are based on
external behavior

+ Aka: specification-based, data- Output
driven, or input/output driven Black-Box Testing
testing

Testing Methods

Structural (White Box) Testing

+ Knowing the internal workings of a program, tests can be
conducted to assure that the internal operation performs
according to specification, and all internal components have
been exercised

¢ Test cases are based on internal structure of the program
and a specific level of coverage.

Test Case Input Test Case Output

WHITE BOX TESTING APPROACH

ﬂ.pplication Coda

ity of Black-Box Testing

Feasibil

+ Suppose specs include 20 factors, each taking on 4 values

. x 10'2 test cases

or |

o 420

+ If each takes 30 seconds to run, running all test cases takes

ion years

> | m

ion makes exhaustive testing to

explos

torial

INa

¢+ Comb

ible

lons imposs

specificat

A\ O \ S NS SSSKKN

A

AW VAW

y [/£

/4

Z4

Feasibility of White-Box Testing

Can exercise every path without detecting every fault
(what if x=2, y=1, z=3?)

if (x+y+2/3==x)

print “x, y, z are equal in value”;
else

print “x, y, z are unequal”;

Testcase : x=1,y

2 7z =3
Test case 2: x =y —

2

Z

Coping with the Combinatorial Explosion

Neither testing to specifications nor testing to code is
feasible toward ensuring complete correctness

The art of testing

+ Select a small, manageable set of test cases to
Maximize chances of detecting fault, while
Minimizing chances of wasting test case

+ Every test case must detect a previously undetected fault
LNy

PRCR A e R
R e T LR Y

/.,.THE ART orf
/

SOFTWARE

TESTING

Coping with the Combinatorial Explosion

We need a method that will highlight as many faults as
possible

¢ First black-box test cases (testing to specifications)

+ Then white-box methods (testing to code)

Unit Test - jUnit

The Most Fundamental Testing Step

¢ The smallest test unit

+ Test every single function

V Unit+ Tes+

V Intearation
e

Acu?*anu
V Tzs';'inj

A MUST-HAVE Skill for Developers

¢+ You are required to write unit test for every change you
made

¢ There is no way that you can skip the process, because
your code will be reviewed by your peer developers

]

LFIND YOURILACK OF UNIT TESTS

From JUnit to xUnit

JUnit is a modern and mature testing framework

Learning JUnit helps learning xUnit

¢ ASP, C++, C#, Eiffel, Delphi, Perl, PHP, Python,
REBOL, Smalltalk, and Visual Basic

JUnit

JUnit Resources

¢ http://junit.org

+ Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. JUnit in
Action. Manning Publications Co., 2010.

¢ Latest version: JUnit 4.12

+ Source code: https://github.com/junit-team/junit

Unit
N ACTION

L RLD)

