
CS480 Software Engineering

Yu Sun, Ph.D.
http://yusun.io
yusun@cpp.edu

Introduction to
Software Testing

Test in Agile Development

Program Testing

¿ Can reveal the presence of errors NOT their absence
¿ Only exhaustive testing can show a program is free from

defects
¿ Exhaustive testing for anything but trivial programs is

impossible

Program Testing

¿ Can reveal the presence of errors NOT their absence
¿ Only exhaustive testing can show a program is free from

defects
¿ Exhaustive testing for anything but trivial programs is

impossible

¿ A successful test discovers one or more errors

Specified, Programmed, and Tested Behaviors

S P

T

U

1

2

34

5 6

7

S = Specified behaviors
P = Programmed behaviors
T = Tested behavior
U = All possible behaviors

We want to make region 1
as large as possible

The V-model of Testing

Requirements

Architectural
Design

Detailed
Design

Module
Implementation

Acceptance
Test

System Test

Integration
Test

Unit Test

Customer

Developer

Testing Stages

¿ Unit testing
¿ Testing of individual components

¿ Integration testing
¿ Testing to expose problems arising from the combination

of components

¿ System testing
¿ Testing the complete system prior to delivery

¿ Acceptance testing
¿ Testing by users to check that the system satisfies

requirements

Testing Stages

¿ Alpha testing
¿ When a product is used by many users, an alpha test is

conducted in a controlled environment at the development
site with end-user participation

¿ Beta testing
¿ An extension to alpha testing where the users test the

software in a "live" environment; developers are typically
not present

Distinction Between Debugging and Testing

¿ Defect testing and debugging are distinct processes
¿ Defect testing is concerned with confirming the presence

of errors
¿ Debugging is concerned with locating and repairing these

errors
¿ Debugging involves formulating a hypothesis about

program behavior then exploring these hypotheses to
find the system error

Historical Views: Thinking About Testing

¿ Phase 0
¿ Testing = Debugging

¿ Phase 1
¿ Testing is an act whose purpose is to show that the

software works

¿ Phase 2
¿ Testing is an act whose purpose is to show that the

software does not work

Historical Views: Thinking About Testing

¿ Phase 3
¿ Testing is an act whose purpose is not to prove anything,

but to reduce the perceived risk of failure to an acceptable
level

All Prime Numbers (1-100) Service Level Agreement (SLA)

Historical Views: Thinking About Testing
¿ Phase 3

¿ Testing is an act whose purpose is not to prove anything,
but to reduce the perceived risk of failure to an acceptable
level

¿ Phase 4
¿ Testing is not an act; rather, it is a mindset that involves

development and coding practices along with a systematic
approach to exercising the software

Testing Methods

¿ Functional (Black Box) Testing
¿ Knowing the specified functions

that a product has been
designed to perform, tests can
be conducted to demonstrate
that each function is fully
operational

¿ Test cases are based on
external behavior

¿ Aka: specification-based, data-
driven, or input/output driven
testing

Testing Methods
¿ Structural (White Box) Testing

¿ Knowing the internal workings of a program, tests can be
conducted to assure that the internal operation performs
according to specification, and all internal components have
been exercised

¿ Test cases are based on internal structure of the program
and a specific level of coverage.

Feasibility of Black-Box Testing
¿ Suppose specs include 20 factors, each taking on 4 values

¿ 420 or 1.1 ´ 1012 test cases
¿ If each takes 30 seconds to run, running all test cases takes

> 1 million years

¿ Combinatorial explosion makes exhaustive testing to
specifications impossible

Feasibility of White-Box Testing
¿ Can exercise every path without detecting every fault

(what if x=2, y=1, z=3?)

Coping with the Combinatorial Explosion
¿ Neither testing to specifications nor testing to code is

feasible toward ensuring complete correctness
¿ The art of testing

¿ Select a small, manageable set of test cases to
¿ Maximize chances of detecting fault, while
¿ Minimizing chances of wasting test case

¿ Every test case must detect a previously undetected fault

Coping with the Combinatorial Explosion

¿ We need a method that will highlight as many faults as
possible
¿ First black-box test cases (testing to specifications)
¿ Then white-box methods (testing to code)

Unit Test - jUnit

The Most Fundamental Testing Step

¿ The smallest test unit
¿ Test every single function

A MUST-HAVE Skill for Developers

¿ You are required to write unit test for every change you
made

¿ There is no way that you can skip the process, because
your code will be reviewed by your peer developers

From JUnit to xUnit

¿ JUnit is a modern and mature testing framework
¿ Learning JUnit helps learning xUnit

¿ ASP, C++, C#, Eiffel, Delphi, Perl, PHP, Python,
REBOL, Smalltalk, and Visual Basic

JUnit Resources
¿ http://junit.org
¿ Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. JUnit in
Action. Manning Publications Co., 2010.

¿ Latest version: JUnit 4.12
¿ Source code: https://github.com/junit-team/junit

